AdaGAN: Boosting Generative Models
نویسندگان
چکیده
Generative Adversarial Networks (GAN) are an effective method for training generative models of complex data such as natural images. However, they are notoriously hard to train and can suffer from the problem of missing modes where the model is not able to produce examples in certain regions of the space. We propose an iterative procedure, called AdaGAN, where at every step we add a new component into a mixture model by running a GAN algorithm on a re-weighted sample. This is inspired by boosting algorithms, where many potentially weak individual predictors are greedily aggregated to form a strong composite predictor. We prove analytically that such an incremental procedure leads to convergence to the true distribution in a finite number of steps if each step is optimal, and convergence at an exponential rate otherwise. We also illustrate experimentally that this procedure addresses the problem of missing modes.
منابع مشابه
Boosted Generative Models
We propose a novel approach for using unsupervised boosting to create an ensemble of generative models, where models are trained in sequence to correct earlier mistakes. Our metaalgorithmic framework can leverage any existing base learner that permits likelihood evaluation, including recent deep expressive models. Further, our approach allows the ensemble to include discriminative models traine...
متن کاملBoosted Density Estimation Remastered
There has recently been a steadily increase in the iterative approaches to boosted density estimation and sampling, usually proceeding by adding candidate “iterate” densities to a model that gets more accurate with iterations. The relative accompanying burst of formal convergence results has not yet changed a striking picture: all results essentially pay the price of heavy assumptions on iterat...
متن کاملDiscriminative Learning Using Boosted Generative Models
Discriminative learning, or learning for classification, is a common learning task that has been addressed in a variety of frameworks. One approach is to design a complex classifier, such as a support vector machine, that explicitly minimizes classification error. Alternatively, an ensemble of weak classifiers can be trained using boosting [4]. However, in some situations it may be desirable to...
متن کاملGenerative Embeddings based on Rician Mixtures - Application to Kernel-based Discriminative Classification of Magnetic Resonance Images
Most approaches to classifier learning for structured objects (such as images or sequences) are based on probabilistic generative models. On the other hand, state-of-the-art classifiers for vectorial data are learned discriminatively. In recent years, these two dual paradigms have been combined via the use of generative embeddings (of which the Fisher kernel is arguably the best known example);...
متن کاملInducing Wavelets into Random Fields via Generative Boosting
This paper proposes a learning algorithm for the random field models whose energy functions are in the form of linear combinations of rectified filter responses from subsets of wavelets selected from a given over-complete dictionary. The algorithm consists of the following two components. (1) We propose to induce the wavelets into the random field model by a generative version of the epsilon-bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017